Aquaculture: Emergency Management and Quarantine of Aquaculture Facilities

SART Training Media
Aquaculture:
Emergency Management
and Quarantine of Aquaculture Facilities
Workbook

Prepared by: Kathleen Hartman, DVM, PhD
Aquaculture Epidemiologist, USDA-APHIS-Veterinary Services

Denise, Petty, DVM,
Assistant Professor, Large Animal Clinical Sciences,
College of Veterinary Medicine, Univ. of Florida

Charles M. Brown
Coordinator for Information/Publication Services
Agricultural and Biological Engineering Dept., Univ. of Florida

Carol J. Lehotla
Associate Professor
Agricultural and Biological Engineering Dept., Univ. of Florida

Copyright by Florida Department of Agriculture and Consumer Services
Published December 2006

Other Aquaculture training units are available. All SART Training Media are available for
download from the Florida SART Web site <www.flsart.org>.
Contents

About Florida SART 4
Learning Objectives 5
PowerPoint Slides — Note Pages 6
Resources 24
About Florida SART

SART is a multiagency coordination group consisting of governmental and private entities dedicated to all-hazard disaster preparedness, planning, response, and recovery for the animal and agriculture sectors in the state of Florida.

SART operates at the local level through county SART organizations.

SART utilizes the skills and resources of many agencies, organizations and individuals with its multiagency coordination group structure.

SART supports the county, regional, and state emergency management efforts and incident management teams.

SART Mission

Empower Floridians through training and resource coordination to enhance all-hazard disaster planning and response for animals and agriculture.

SART Goals

• Promote the active engagement of each county coordinator who is responsible for animal and agricultural issues
• Provide assistance in the development and writing of county ESF-17 plans
• Promote the establishment of a county SART to work as a multiagency coordination group to support emergency management and incident management teams
• Provide training for all SART and animal and agriculture personnel
• Identify county resources available for an emergency or disaster
• Work to comply with the National Incident Management System (NIMS) document
Subject: Aquaculture may be Florida’s least known, important commodity. This unit introduces participants to needs and procedures in helping an aquaculture facility respond to a man-made or natural disaster.

Learning Objectives

At the end of this unit, participants will be able to:

1. Identify natural and man-made disasters and disease-related emergencies that affect the aquaculture industry.
2. List and discuss an aquaculture operation’s basic needs.
3. Identify and discuss risk factors common to an aquaculture operation.
4. List and describe effective risk management techniques as applied to an aquaculture facility.
5. Identify key resources available for more information.
Emergency Management and Quarantine of Aquaculture Facilities

Prepared by:

Kathleen Hartman, D.V.M., Ph.D.
Aquaculture Epidemiologist, USDA-APHIS-VS

Denise Petty, D.V.M.
Assistant Professor, LACS, CVM, UF
Learning Objectives

- Identify natural and man-made disasters and disease-related emergencies that affect aquaculture
- List and discuss an aquaculture operation’s basic needs
- Identify and discuss risk factors common to an aquaculture operation
- List and describe effective risk management techniques as applied to an aquaculture facility
- Identify key resources available for more information

Emergency Scenarios

- Natural disasters
- Man-made disasters
- Biological disasters
 - Examples: endemic and foreign aquatic animal diseases (FAAD)

Natural Disasters

- Examples: Hurricanes, Drought, Flood, Fire
- Avoid release of nonindigenous species
 - Establish physical barriers, depopulate
- Evacuation (broodstock, high value animals)
 - Short- and long-term plans advisable
 - How to provide oxygen supply, water quality, supportive therapy?
- Euthanasia and carcass disposal plans
 - Humane practices
 - Disposal within regulatory requirements of the state
Natural Disasters

2004 Hurricane Season

Types of damage to aquaculture facilities
- Wind
 - Farm structures and equipment
- Flooding
 - Crop losses and contamination
- Power and water outages
 - Operational and maintenance losses

Remember, these damages can result from other disasters, too, not just hurricanes!

Natural Disasters

Wind Damage

Photos courtesy of: W. Stephen, FDACS Division of Aquaculture

Natural Disasters

Flooding

Photo courtesy of: W. Stephen, FDACS Division of Aquaculture
Emergency Scenarios

Power Outages

Photo courtesy of: W. Stephen, FDACS Division of Aquaculture

Emergency Scenarios

Man-Made Disasters

• Examples
 - Agroterrorism
 - Nuclear fallout
 - Chemical spill

• Food Fish
 - Euthanasia and carcass disposal
 - Epidemiological investigation – impact of disaster

• Non-Food/Ornamental Fish
 - Epidemiological investigation
 - Only undesired impact is consumer confidence

Emergency Scenarios

Endemic & Foreign Aquatic Animal Disease

• FAAD examples
 - Bonamiosis
 - Spring Viremia of Carp
 - White Spot disease

• Diagnostics/pathogen confirmation
 - Enforce quarantine if positive

• Quarantine and biocontainment
 - As directed by state officials

• Depopulate, dispose of carcasses
 - As directed by state officials

• Clean and disinfect
 - Equipment, facilities

Photo courtesy of: W. Stephen, FDACS Division of Aquaculture
Aquaculture’s Basic Needs

- **Water**
 - Quality source
 - Filtration
- **Air**
 - Oxygen supply
- **Temperature control**

Aquaculture Systems

- **Extensive**
 - Static
- **Intensive**
 - Flowing
 - Open
 - Closed

Basic Needs for Aquaculture

- **Air**
- **Temperature control**
- **Water**
 - Oxygen supply
 - Suitable supply
 - Quality source
 - Suitable filtration

Aquaculture Systems

- Defined by extensive and intensive
 - Extensive – static water system – Lower input and lower yield
 - Intensive – flowing water system – High water volume, input higher with higher yield
- **Static water system**
 - Reliable water source, require inputs occasionally
 - Example: earthen pond
- **Flowing water system**
 - Continuous water supply
 - Defined as open or closed
 - Examples: raceways, ponds, ocean net pens, aquariums, cages, recirculating systems
Basic Needs for Aquaculture

Open and Closed Aquaculture Systems

• Open Water Systems – water flows through system and released into water body
 - Excellent water quality
 - High stocking densities
 - Reliable, suitable water source
 - Examples: raceways, pens, cages

• Closed Water Systems – water from culture chamber recycled back into system after filtration or treatment
 - Less water input required
 - Less effluent
 - Control over water quality
 - Limited stocking densities
 - Increased cost
 - Examples: ponds, aquariums, recirculation systems

Open Aquaculture Systems

- Raceway
 Picture courtesy aquanic.org

- Net Pen

Closed Aquaculture Systems

- Typical glass aquariums
- Larger fiberglass aquaculture system tanks
Water Quality

The most important production component for raising fish

- Parameters of importance:
 - Ammonia, nitrates, DO, temperature, pH, hardness, CO₂, turbidity, chlorine, heavy metals
 - Some fish have different tolerances

- Test kits
 - Watch expiration dates
 - Wash after each use and between tanks

- Reliable, safe supply source
 - Protected source
 - Unprotected source

[Image of fish]

Water Quality

Mechanical Filtration

- Effective in removing suspended solids

- Several methods and mediums available
 - Gravel and sand filters
 - Gravity and pressurized systems

[Image of filtration system]

Water Quality

Biological Filtration

- Primary function – nitrification of ammonia

- Several requirements for adequate function
 - Surface area for bacterial colonization
 - Oxygen
 - Time

- Size of biofilter determined by the amount of ammonia in the system and its efficiency

[Image of biofilter]
Chemical Filtration

- Commercial products available
- Use with caution
- Do not fix problem of inadequate biofilter

Tanks and filtration systems for Epcot Living Seas Aquarium
Factors that Influence Dissolved Oxygen

More Dissolved Oxygen at:
- Higher Temperature
- Higher Pressure
- Lower Salinity

Less Dissolved Oxygen at:
- Lower Temperature
- Lower Pressure
- Higher Salinity
Preparing for Emergencies
Identification of Risk Factors and Facility Risk Management

Temperature

- Direct effect on metabolism, feeding and survival
- Species-specific optimum levels
 - Protect from heat and cold
- Metabolism
 - Temp ↑ leads to rapid metabolism ↑
 - Temp ↓ leads to O₂, food demand ↓
- Acclimation
 - Gradual changes
 - Minimizes temperature stress
- Stress signs: Lethargy, abnormal behavior, increased ventilation, death

Temperature has a greater impact on fish development and health than any other factor

Tools for Aquatic Animal Emergencies

- Alternate emergency water source
 - Bottled water – may be missing necessary ions
 - Drinking water – must dechlorinate
 - No deionized or reverse osmosis (RO) water
- Test kit
 - Evaluate water quality parameters
- Diagnostic resource
- Supportive therapy
- Equipment
 - Thermometers, DO meter, refractometer, etc.
- Back-up power source
 - Generator or power equipment
- Oxygen
 - Primary or alternate oxygen supply

Slides 28-30
Risk Factor Identification

Biological Hazard Transmission

- Modes of pathogen transmission
- Aerosolization/splashing
- Contamination
 - Fish, equipment, personnel, feed, water
- Vertical and horizontal transmission
- Vectors
 - Personnel, equipment, some parasites

Transmission of many hazards can be prevented with proper risk management

Risk Factor Identification

Aquaculture Risk Factors

Identify intervention points to enhance animal health by considering three groups of risk factors

- Incoming materials
 - Fish, equipment, people, feed, vehicles
- On-farm management
 - Fish, quarantine, traffic and equipment flow
- Outgoing effluent and products
 - Water
 - Fish

Risk Factor Identification

Fish Husbandry

- Risk of pathogen introduction
 - Incoming fish can infect resident fish
 - Resident fish can infect incoming fish
- Intervention tactics
 - Practice quarantine and/or acclimation
 - Purchase fish from reputable source
 - Monitor environmental conditions
 - Water management
 - Feed management
 - Observe daily
Risk Factor Identification

Equipment

- **Intervention tactic**
 - Multiple dip buckets/disinfection stations
 - Restrict net and equipment sharing
 - Separate nets for quarantine/suspect fish
 - Dip change protocol

Personnel

- **Risk of pathogen introduction and dissemination from one tank to another**
- **Intervention tactics**
 - Training
 - Limit access
 - Hygiene program
 - Foot bath, hand wash
 - Clean clothes; protective clothing
 - Awareness

Facility Risk Management

Quarantine

- **Isolated Space**
 - Separated from resident fish
 - Dedicated equipment/supplies
 - Limited visitor access
 - Managed personnel and traffic flow
- **Bag water**
 - Potential source of pathogens
 - Poor water quality (high ammonia, low pH, high CO₂)
 - Waste management
Facility Risk Management

Quarantine

- **Length of time**
 - Pathogen life cycle dependent
 - Pathogen reproduction
 - Water temperature
 - Recommended time: = 4 weeks
- **Manipulations for pathogen expression**
- **Diagnostics/Treatments**
 - Monitor health status (non-lethal sample collection)
 - Treat for specific pathogens

Remember, the goal is to target specific pathogen elimination and/or prevention.

Acclimation

- Defined as a method to slowly introduce fish to a new environment
- During this period, it is possible to perform therapeutic treatments

Facility Risk Management

Quarantine vs. Acclimation

<table>
<thead>
<tr>
<th>Quarantine</th>
<th>Acclimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires minimum of four weeks</td>
<td>Complete within hours</td>
</tr>
<tr>
<td>Isolated system and equipment</td>
<td>Group acclimation</td>
</tr>
<tr>
<td>Separate species/origin</td>
<td>Stress reduction</td>
</tr>
<tr>
<td>Reduce density</td>
<td>Bath treatment possible</td>
</tr>
<tr>
<td>Diagnostics, treatment</td>
<td>Less than optimal for pathogen control/elimination</td>
</tr>
<tr>
<td>Requires more labor and money</td>
<td></td>
</tr>
<tr>
<td>Optimal for pathogen control/elimination</td>
<td></td>
</tr>
</tbody>
</table>
Facility Risk Management

Collecting Fish Samples

- Case history information
 - General, behavioral, physical, treatments
- Water sample
 - Clean transport bag
 - Ship with fish
- Collect live moribund fish
 - 3-5; multiple species if applicable
- If dead, wrap fish in moist paper towels and place in plastic zipper lock-type bag
- Do not freeze, refrigerate only

Facility Risk Management

Submitting Fish Samples

- Call diagnostic lab
- Package live fish sample
 - Double bag
 - 1/3 filled water
 - Oxygen source (compressed O₂, oxy tabs)
 - Heat/Cool packs if necessary
 - Styrofoam box (cardboard outer box)
 - History information (in plastic bag)
- Ship overnight or hand-deliver
 - Label outside box: LIVE FISH

Facility Risk Management

Euthanasia of Aquatic Animals

- Primary methods
 - Drug overdose (MS-222, benzocaine)
 - Expensive and impractical for large populations
 - CO₂ (compressed gas) and rotenone
 - USDA uses for SVC depopulation
 - More practical for large populations
- Secondary method is stunning followed by decapitation

Photo source: zfin.org
Key Resources

- USDA-APHIS fact sheets for various animal diseases

- APHIS’s Center for Emerging Issues (CEI) worksheets on animal health and diseases of concern

- Aquatext.com, a free, on-line aquaculture dictionary
 http://www.pisces-aqua.co.uk/aquatext/dicframe.htm

Facility Risk Management
Sanitary Precautions

What do you notice?
Every tank has its own equipment... there is no sharing between tanks

Facility Risk Management
Sanitary Precautions

What do you notice?

Slides 43-45
Key Resources

- **Florida Department of Community Affairs, Division of Emergency Management**

 http://www.floridadisaster.org

- **United States Department of Agriculture (USDA)**

- **Florida Department of Agriculture and Consumer Services (FDACS)**

 http://www.doacs.state.fl.us

Key Resources

- **Florida Division of Aquaculture home page**

 http://www.floridaaquaculture.com

- **Aquaculture Best Management Practices manual**

- **Aquaculture Network Information Center**

 http://aquanic.org

Key Resources

- **USDA Animal and Plant Health Inspection Service (APHIS)**

- **World Organisation for Animal Health (OIE)**

 http://www.oie.int

- **Safety for Fish Farm Workers video on the National Ag Safety Database (NASD), English and Spanish versions**

Key Resources

• University of Florida Institute of Food and Agricultural Sciences Electronic Data Information Source (EDIS) fact sheets for aquaculture, including diseases
 http://edis.ifas.ufl.edu/DEPARTMENT_VETERINARY_MEDICINE
 http://edis.ifas.ufl.edu/DEPARTMENT_FISHERIES_AND_AQUATIC_SCIENCES
 http://edis.ifas.ufl.edu/TOPIC_Fish

• “Aquaculture Natural Disaster Preparation and Recovery” Clemson University Cooperative Extension
 http://www.clemson.edu/psapublishing/PAGES/APW/AFW12.PDF

Key Resources

• University of Florida IFAS Extension Disaster Handbook
 http://disaster.ifas.ufl.edu

• Spawn, Spat, and Sprains by Alaska Sea Grant College Program
 http://www.uaf.edu/seagrant/Pubs_Videos/pubs/AN17.pdf

• Southern Regional Aquaculture Center (SRAC) fact sheets
 http://www.msstate.edu/dept/srac/fslist.htm
 http://srac.tamu.edu

Key Resources

For any biosecurity or quarantine questions, contact:

Dr. Kathleen Hartman, Aquaculture Epidemiologist

TELEPHONE : 813-671-5230 ext. 119
E-MAIL : kathleen.h.hartman@aphis.usda.gov
ADDRESS : 1408 24th Street, SE
 Ruskin, FL 33570
Summary

• Natural and man-made disasters and disease-related emergencies that can affect an aquaculture facility
• The basic needs for an aquaculture operation
• Risk factors common to operating a facility
• Effective risk management techniques that can be applied to prepare for an emergency or mitigate one
• Valuable resources available for more information

Thank You!
Resources

The following are sources of additional information about the agencies, manuals and documents mentioned in this module. Others listed, but not mentioned in this module, may be helpful resources as well. [Note that Web addresses on the PowerPoint slides are hyperlinked to allow you to visit these sites during the presentation to show the audience anything you find particularly noteworthy.]

- APHIS’s Center for Emerging Issues (CEI) has various worksheets available on animal health and diseases of concern. <http://www.aphis.usda.gov/vs/ceah/cei/worksheets.htm>

- Aquatext.com is a free, on-line aquaculture dictionary. <http://www.aquatext.com>

- Florida Department of Community Affairs, Division of Emergency Management. <http://www.floridadisaster.org>

- Florida Department of Agriculture and Consumer Services (FDACS). <http://www.doacs.state.fl.us>

- FDACS Division of Aquaculture. <http://www.floridaaquaculture.com>

- Safety for Fish Farm Workers video on the National Ag Safety Database (NASD), English and Spanish versions available. <http://www.cdc.gov/nasd/videos/v001401-v001500/v001433.html>

- Spawn, Spat, and Sprains, produced by the Alaska Sea Grant College Program, describes the dangers faced by shellfish farmers and salmon hatchery workers at the aquaculture...
worksite. It also tells how to reduce the chance of injury. Chapters include physical and chemical hazards, proper lifting techniques, airplane and boat safety, basic first aid, electrical hazards, fire fighting, cold water survival, and coping with bears. The entire book can be downloaded from: <http://www.uaf.edu/seagrant/Pubs_Videos/pubs/AN-17.pdf>

- Dr. Kathleen Hartman, an aquaculture epidemiologist, can be consulted for any questions:

 Telephone: 813-671-5230, ext. 119
 E-mail: kathleen.h.hartman@aphis.usda.gov
 Address: 1408 24th Street, SE
 Ruskin, Florida 33570

- University of Florida Institute of Food and Agricultural Sciences Electronic Data Information Source (EDIS) fact sheets for aquaculture, aquatic diseases and facility management can be found at: <http://edis.ifas.ufl.edu/DEPARTMENT_VETERINARY_MEDICINE> and <http://edis.ifas.ufl.edu/DEPARTMENT_FISHERIES_AND_AQUATIC_SCIENCES> and <http://edis.ifas.ufl.edu/TOPIC_Fish>.

- University of Florida IFAS Extension Disaster Handbook. <http://disaster.ifas.ufl.edu>

- Southern Regional Aquaculture Center (SRAC) fact sheets on topics ranging from tanks to tilapia are available for download at: <http://www.msstate.edu/dept/srac/fslist.htm> or <http://srac.tamu.edu>.

Emergency Management and Quarantine of Aquaculture Facilities • Workbook 25
Notes